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Abstract 24 

Delta-models (a.k.a. hurdle models) are widely used to fit biomass samples that include zeros 25 

and a skewed response for positive catches, and spatio-temporal extensions of these models are 26 

increasingly used to quantify trends in abundance (i.e., estimate abundance indices). Previous 27 

research has shown estimated indices are proportional to changes in abundance.   However, little 28 

research has tested the performance of delta-models for estimating “scale”; that is, whether 29 

abundance indices are not just proportional to population changes but also have the correct 30 

absolute value.  We use data for twenty species in the eastern Bering Sea and Gulf of Alaska as 31 

well as a factorial experiment conditioned on data for Gulf of Alaska Pacific cod to support five 32 

conclusions related to scale in spatio-temporal delta-models.  First, we show that conventional 33 

(nonspatial) delta-models are surprisingly sensitive to the a priori choice of probability 34 

distribution for positive catches, where gamma and Tweedie models give similar scale estimates 35 

but other distributions generally differ.  Second, these same distributions also estimate widely 36 

different scales when using spatio-temporal delta-models, and the delta-gamma and Tweedie 37 

models provide similar scale to design-based indices.  Third, model selection using marginal 38 

AIC often identifies the lognormal distribution as most parsimonious, despite it resulting in 39 

systematically higher abundance than design-based indices for many species.  Fourth, scale is 40 

sensitive to the spatial resolution (i.e., number of knots) used in fitting the spatio-temporal model 41 

when using a naïve “empirical Bayes” estimator, but less sensitive when applying an epsilon 42 

bias-correction estimator.  Fifth, the factorial simulation experiment suggests that the Tweedie 43 

and delta-gamma distributions perform well even when applied to data simulated from an 44 

inverse-Gaussian or lognormal distribution, whereas the opposite is not true.  We conclude that 45 

index scale is sensitive to delta-model specification, and we make five recommendations when 46 

using spatio-temporal delta-models for index standardization: (1) apply the epsilon or other bias-47 
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correction methods to reduce sensitivity of index scale on spatio-temporal model resolution; 48 

either (2) compare the scale of delta-model indices with that of design-based indices when 49 

design-based indices are available or (3) use the delta-gamma or Tweedie distribution by default 50 

when design-based indices are not available; (4) do not assume that AIC will identify the model 51 

specification that results in the most appropriate scale; and (5) consider apparent mismatches in 52 

index scale depending upon whether an assessment model specifies or estimates the associated 53 

catchability coefficient and whether the design-based index is believed to measure total 54 

abundance for a fully-selected age or length-class.   55 

 56 

Keywords:  Vector autoregressive spatio-temporal model; VAST; delta model; Tweedie 57 

distribution; stock assessment; abundance index; catchability coefficient 58 
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1. Introduction 60 

 Fisheries scientists worldwide support fisheries management by estimating stock status 61 

and sustainable fishing levels.  They typically do this by fitting population-dynamics models to 62 

fishery catches, measurements of age and length composition, and indices of population 63 

abundance (Methot, 2009).  Many common stock-assessment models are fitted to abundance-64 

indices that are measures (or proxies) of biomass.  Fisheries scientists have therefore developed a 65 

wide range of methods to sample local biomass and subsequently estimate total biomass over a 66 

pre-defined spatial domain.  These methods include design-based indices, which are constructed 67 

from field-samples of biomass following a probabilistic design (wherein every sampling unit is 68 

sampled with a pre-specified probability) and an associated statistical estimator (Cochran, 1977; 69 

Smith, 1990; Petitgas, 2001).  However, design-based indices are not appropriate for fishery-70 

dependent data that are not collected under a probabilistic design, or for surveys where the 71 

design has changed substantially over time (i.e., adding northern stations in the eastern Bering 72 

Sea, or changing the southern extent in the West Coast triennial bottom trawl survey).  The 73 

inability to apply design-based estimators in these instances has led to interest in model-based 74 

biomass estimators, including the widely used delta-model (Pennington, 1983; Lo et al., 1992; 75 

Stefansson, 1996).   76 

The delta-model has been widely used for over 35 years, and separately models the 77 

probability that each sample encounters a given species (termed “encounter probability” here) 78 

and the probability distribution for sample biomass given that the species is encountered (termed 79 

“positive catch rate” here).  Aitchison (1955) originally described the delta-model as a mixture 80 

distribution that contained a point mass at zero and a conditional distribution describing positive 81 

(non-zero) values. The delta-lognormal distribution was proposed in the follow-up paper by 82 

Aitchison and Brown (1957) and was first applied in fisheries by Pennington (1983) to describe 83 
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Atlantic mackerel egg production. Lambert (1992) first used a logit link function to approximate 84 

the probability of encountering zero as a linear function of covariates in the context of zero-85 

inflated Poisson distributions. This approach was first applied in fisheries by Lo et al. (1992) to 86 

calculate an index of relative abundance for anchovy.  Delta-models were then popularized in 87 

subsequent publications (Stefansson, 1996; Maunder and Punt, 2004).   88 

Ongoing research has also developed spatio-temporal models that account for the 89 

correlation among survey observations resulting from their proximity in space and/or time 90 

(Banerjee et al., 2003; Cressie and Wikle, 2011), and these methods have recently been adapted 91 

to a delta-modelling framework (Shelton et al., 2014; Thorson et al., 2015).  The benefit of a 92 

spatio-temporal delta-model can be seen by comparison with a design-based estimator.  93 

Specifically, spatially-correlated variability in habitat quality will result in residual variance 94 

among samples within each spatial stratum in a stratified-random design; this residual variance 95 

will result in increasing variance for the resulting index when using a stratified-random design-96 

based estimator.  In these cases, accounting for the randomized location of samples can control 97 

for this spatially-correlated variability, and therefore can substantially reduce standard errors for 98 

spatio-temporal indices (Shelton et al., 2014; Cao et al., 2017).  In addition to increased index 99 

precision, spatio-temporal delta-models have been shown to reduce biologically-implausible 100 

variation in indices for long-lived species (Gertseva and Thorson 2013). When a spatio-temporal 101 

delta-model was fit to U.S. West Coast trawl survey data for 28 groundfish species, confidence 102 

intervals from the conventional design-based approach were 60% larger on average than those 103 

derived from the spatio-temporal estimator (Thorson et al. 2015).  104 

Spatio-temporal delta-models have previously and continue to be implemented for a wide 105 

range of purposes.  They have been used extensively for standardization of US West Coast 106 
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groundfish trawl survey data and are seeing increased application to Alaska groundfish survey 107 

data (see list in Thorson, 2019a). In other US fisheries, spatio-temporal delta-models have been 108 

implemented to estimate indices using data form multiple trawl surveys (Perretti and Thorson 109 

2019), or from a mix of trawl and fixed-gear survey observations (Gruss and Thorson 2019). 110 

Bayesian spatio-temporal delta-models have also been developed for standardization of 111 

crustacean indices from trawl survey data from the Mediterranean Sea (Arcuti et al. 2016) and 112 

shark bycatch in Canadian waters (Cosandey-Godin et al., 2014). For conservation planning, 113 

spatio-temporal models have been used to integrate data from seven fisheries-independent 114 

surveys, with the goal of quantifying spatial separation among target and non-target species in 115 

highly-mixed Celtic Sea fisheries (Dolder et al. 2018), and to quantify spatial bycatch risk in the 116 

Pacific Ocean (Stock et al. 2020). Finally, spatio-temporal delta-models have been utilized for 117 

ecological inference to describe changes in species distribution, concentration, and habitat 118 

association (Thorson et al. 2016a, Thorson et al. 2016b). 119 

Design-based biomass indices derived from fishery-independent bottom trawl surveys are 120 

fitted within many age-structured stock assessments for fish stocks in the North Pacific 121 

(NPFMC, 2019a, 2019b). Age-structured models have the capacity to estimate the catchability 122 

coefficient representing the ratio of predicted and index biomass (Arreguín-Sánchez, 1996). 123 

Catchability coefficients are extremely influential with respect to the scale of biomass estimated 124 

by a stock assessment model and are typically either estimated as a parameter or fixed at some 125 

predetermined value (Wilberg et al., 2010). The estimated value for the catchability coefficient is 126 

affected by spatial overlap between the stock and the spatial extent of the survey (“horizontal 127 

availability”), the stocks’ vertical availability in the water column, and the stocks’ vulnerability 128 

to the gear used to capture the fish (Cordue, 2007). Given the potential sensitivity of survey 129 



7 
 

index scale to standardization methods, and the interaction between index scale and the 130 

catchability coefficient on stock assessment results, it is useful to summarize the many ways 131 

catchability is specified within assessments currently.  132 

We explore stock assessments at the Alaska Fisheries Science Center (AFSC) as an 133 

example of stock-assessment practices for specifying the catchability coefficient throughout the 134 

US and worldwide.  Stock assessments at the AFSC treat the catchability coefficient using a 135 

variety of approaches (see Table 1 for summary) ranging from fixing it at a value a priori (e.g., 136 

Bryan, 2017) to estimated freely (Thompson and Thorson, 2019). When the catchability 137 

coefficient is fixed a priori, the survey biomass is treated as an absolute index and any change in 138 

the scale of survey biomass would have direct influence on parameters that determine the scale 139 

of the population (such as average recruitment and natural mortality rate). When the catchability 140 

coefficient is estimated freely, the survey biomass is treated as a relative index and any 141 

multiplicative change in index scale will be offset by a corresponding change in the estimated 142 

catchability coefficient. Between these two extremes, some stock assessments estimate the 143 

catchability coefficient using a prior distribution (either in a Bayesian or penalized likelihood 144 

framework) with an associated level of uncertainty; this specified uncertainty determines the 145 

degree to which the estimated catchability coefficient is able to deviate from the mean of this 146 

prior distribution.  When specifying a prior distribution, an infinitesimally small uncertainty is 147 

equivalent to specifying a fixed value for the catchability coefficient, and an infinite level of 148 

uncertainty (using a normal prior distribution with arbitrarily large variance) is equivalent to 149 

freely estimating the catchability coefficient.  As a consequence, the impact of changing the scale 150 

of the survey index on modeled quantities from an assessment, such as spawning biomass or 151 

management reference points, will be determined by the degree of precision ascribed to the 152 
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assumed prior on catchability coefficients: changes in index scale will be more influential on 153 

modeled quantities  in cases of a precise (low variance) prior and less influential in cases of 154 

imprecise (high variance) prior on catchability. 155 

The probability distribution for positive catches specified in a delta-model can directly 156 

affect the absolute scale of the estimated index, and this is particularly important in stock 157 

assessments where the catchability coefficient is fixed a priori or has an informative prior 158 

distribution. For instance, the delta-model can result in a biased estimate of average biomass 159 

when the probability distribution is mis-specified with respect to the distribution of residuals 160 

(Hvingel et al., 2012; Myers and Pepin, 1990).  Furthermore, delta-models can be highly 161 

sensitive to deviations from model assumptions that are otherwise difficult to detect using 162 

standard statistical diagnostics (Syrjala, 2000). In response, many approaches have been 163 

proposed and/or applied for selecting the most appropriate distribution. Graphical tests such as 164 

Taylor’s power rule may help narrow the proposed set of distributions (Dick, 2004). Diagnostic 165 

tests like simple Pearson correlation and normality tests on residuals, but also the lesser-known 166 

Pregibon, modified Hosmer-Lemeshow, Kolmogorov-Smirnov, and Anderson-Darling tests have 167 

also been explored but without consensus about their performance (Hvingel et al., 2012; Ng and 168 

Cribbie, 2017). Researchers have also selected among alternative distributions using information 169 

criteria like the Akaike and Bayesian Information Criteria (Akaike, 1974; Schwarz, 1978; 170 

Burnham and Anderson, 2002), which appear reliable in simulations under ideal conditions and 171 

sufficient sample sizes (Dick, 2004; Mitchell et al., 2015). However, sometimes AIC will select 172 

models that fail diagnostic tests or can be unreliable with small sample sizes (Dick, 2004; Ng and 173 

Cribbie, 2017). Furthermore, these previous simulations used GLMs without spatial effects such 174 

that conclusions may not apply to spatio-temporal GLMMs. Consequently, the best statistical 175 
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approach for selecting the distribution for positive catch rates in spatio-temporal delta-models 176 

remains unknown.   177 

 In this analysis, we first illustrate that the scale of an abundance-index estimated using a 178 

conventional (nonspatial) delta-model is highly dependent upon the assumed distribution for 179 

positive catch rates.  We then compare index estimates from four spatio-temporal models (using 180 

delta-gamma, delta-lognormal, delta-inverse-Gaussian, and Tweedie distributions) with design-181 

based estimates for twenty stocks in the eastern Bering Sea and Gulf of Alaska.  Previous 182 

research has developed an epsilon bias-correction estimator (Thorson and Kristensen, 2016) that 183 

corrects for “retransformation bias” arising when random effects are transformed when 184 

calculating a quantity of interest (Thorson, 2019b), but no previous study has used a simulation 185 

experiment to demonstrate its importance when estimating abundance using a spatio-temporal 186 

model.  Similarly, we are not aware of any previous simulation study exploring how alternative 187 

choices about spatial scale can affect the performance of a spatio-temporal index standardization 188 

model.  We therefore compare performance within a factorial design of twenty species, four 189 

distributions, three spatial resolutions, and two estimators (either naïve or using the epsilon bias-190 

correction estimator).  We then identify which distribution(s) provide an approximately equal 191 

number of years where the abundance index is greater or less than the design-based index (i.e. 192 

equivalent scale of design and model-based indices), as well as which distribution(s) estimate a 193 

similar ratio between the modeled and design-based index.  Finally, we use a factorial simulation 194 

design conditioned upon data for Pacific cod (Gadus macrocephalus) in the Gulf of Alaska, 195 

where we simulate data using each of the four models and fit each data set with these same four 196 

estimation models.  Using this simulation design, we again determine the ratio of index-scale 197 

with the true population scale, as well as root-mean-squared error, to identify whether any model 198 
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performs best on average. Based on these findings we provide generic advice for configuring 199 

delta-models for estimating abundance indices for use in stock assessments.  200 

2. Methods 201 

2.1  Overview 202 
We seek to determine what specification for a spatio-temporal index standardization 203 

model results in an index scale that matches estimates from a design-based estimator.  We 204 

specifically explore two alternative types of index standardization models: a delta-model 205 

involving two linear predictors, or a compound Poisson-gamma (a.k.a. Tweedie) distribution 206 

involving a single linear predictor.  For the delta-model, we specifically explore three alternative 207 

distributions for positive catch rates: a lognormal, gamma, or inverse-Gaussian distribution.  This 208 

then results in four model-specifications in total.  All models are implemented using the Vector 209 

Autoregressive Spatio-Temporal (VAST) model (Thorson and Barnett, 2017; Thorson, 2019a), 210 

as implemented in package VAST release number 3.5.0 available online 211 

(https://github.com/James-Thorson-NOAA/VAST) for the R statistical environment (R Core 212 

Team, 2017).  We do not explore the potential role of covariates in the following, although future 213 

research could continue to explore tradeoffs associated with their inclusion (e.g., Johnson et al., 214 

2019).     215 

 We apply these four model specifications in two separate explorations: 216 

1. Case study:  The first is a case-study demonstration, where we fit these four model-217 

specifications to data for twenty selected species in the Gulf of Alaska and eastern Bering 218 

Sea.  We conduct two separate experiments using these case-study species.  In the first, we fit 219 

nonspatial models that estimate a separate intercept for each linear predictor in each year to 220 

each species.  This experiment is useful to show that differences in model scale arise between 221 

https://github.com/James-Thorson-NOAA/VAST
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alternative model specifications even in the simplest possible specification of an index-222 

standardization model.  In the second, we fit a spatio-temporal model to data for each 223 

species.  In this experiment, we then compare results with a design-based estimator for each 224 

species, to see which model specification results in a similar index scale to the design-based 225 

estimator.     226 

2. Factorial simulation experiment:  The second is a factorial simulation experiment, where we 227 

fit each model specification to data for a single species (Pacific cod in the Gulf of 228 

Alaska).  Given the estimated fixed and random effects for that species, we then simulate 229 

multiple replicate data sets.  For each data set, we then fit all four estimation models.  This 230 

then results in a 4×4 factorial cross of 4 operating models and 4 estimation models per 231 

simulation replicate.  We refer to scenarios where the estimation model matches the 232 

operating model as a “self-test”, while other scenarios explore the implications of model mis-233 

specification on estimation model performance. 234 

 We describe each of these explorations in more detail below. 235 

2.2  Model structure 236 
In the following, we fit to observed biomass 𝑏𝑏𝑖𝑖 for each sample 𝑖𝑖 using either a Poisson-link 237 

delta-model (Thorson, 2018) or a compound Poisson-gamma model (Foster and Bravington, 238 

2013).  Delta-models have conventionally involved a logit-linked linear predictor for encounter 239 

probability, and a separate log-linked linear predictor for catch rates given an encounter 240 

(Stefansson, 1996).  However, we instead use a Poisson-link delta model that previous research 241 

has shown to fit better while yielding a model structure that is more similar to the compound 242 

Poisson-gamma distribution.   243 

Poisson-link delta-models involve two log-linked linear predictors: 244 
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log�𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)� = 𝛽𝛽𝑛𝑛(𝑡𝑡𝑖𝑖) + 𝜔𝜔𝑛𝑛∗(𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑛𝑛∗(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) 

log�𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)� = 𝛽𝛽𝑤𝑤(𝑡𝑡𝑖𝑖) + 𝜔𝜔𝑤𝑤∗ (𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑤𝑤∗ (𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖), 

(1) 

where 𝛽𝛽𝑛𝑛(𝑡𝑡) is an annually varying intercept for each modeled year 𝑡𝑡 ∈ {𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛, … , 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚}, 𝜔𝜔𝑛𝑛∗(𝑠𝑠) is 245 

spatial variation that is constant over time (termed “spatial variation”) for location 𝑠𝑠 ∈ Ω within a 246 

fixed spatial domain Ω, and 𝜀𝜀𝑛𝑛∗  is spatial variation that varies among years (termed “spatio-247 

temporal variation”) in the 1st log-linked linear predictor 𝑛𝑛(𝑠𝑠, 𝑡𝑡) and similar notation is used for 248 

the second log-linked linear predictor 𝑤𝑤(𝑠𝑠, 𝑡𝑡).  The product of these linear predictors 𝑑𝑑(𝑠𝑠, 𝑡𝑡) =249 

𝑛𝑛(𝑠𝑠, 𝑡𝑡)𝑤𝑤(𝑠𝑠, 𝑡𝑡) is then population density 𝑑𝑑(𝑠𝑠, 𝑡𝑡) at each location 𝑠𝑠 and time 𝑡𝑡.  By contrast, the 250 

compound Poisson-gamma model involves a single log-linked linear predictor for density: 251 

log�𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)� = 𝛽𝛽𝑑𝑑(𝑡𝑡𝑖𝑖) + 𝜔𝜔𝑑𝑑
∗ (𝑠𝑠𝑖𝑖) + 𝜀𝜀𝑑𝑑∗(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) (2) 

which again includes an annual intercept, spatial, and spatio-temporal variation.   252 

 These models then involve specifying a probability distribution 𝐵𝐵 for each sample of 253 

biomass 𝑏𝑏𝑖𝑖.  The Poisson-linked delta-models convert 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) and 𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖) to encounter 254 

probability 𝑝𝑝𝑖𝑖 and positive catch rate 𝑟𝑟𝑖𝑖, which varies among samples 𝑖𝑖 occurring at a given 255 

location 𝑠𝑠𝑖𝑖 and time 𝑡𝑡𝑖𝑖 due to differences in area-swept 𝑎𝑎𝑖𝑖.  The Poisson-linked delta-model 256 

assumes that individuals are randomly distributed in the vicinity of sampling: 257 

𝑝𝑝𝑖𝑖 = 1 − exp�−𝑎𝑎𝑖𝑖𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)� 

𝑟𝑟𝑖𝑖 =
𝑎𝑎𝑖𝑖𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑡𝑡𝑖𝑖)

𝑝𝑝𝑖𝑖
 

(3) 

and all delta-models assume the same probability for encounter probability: 258 

Pr(𝐵𝐵 = 0) = 1 − 𝑝𝑝𝑖𝑖 (4) 

 while alternative delta-models differ in the distribution for positive catches.  Specifically we use 259 

a bias-corrected lognormal where dispersion parameter 𝜃𝜃 is the standard deviation in log-space: 260 
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Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖|𝐵𝐵 > 0) = 𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝑟𝑟𝐿𝐿𝑎𝑎𝐿𝐿 �𝐵𝐵; log(𝑟𝑟𝑖𝑖) −
𝜃𝜃2

2
,𝜃𝜃2� 

(5A) 

or use a shape-scale parameterization of the Gamma distribution where dispersion 𝜃𝜃 is the 261 

coefficient of variation: 262 

Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖|𝐵𝐵 > 0) = 𝐺𝐺𝑎𝑎𝐿𝐿𝐿𝐿𝑎𝑎(𝐵𝐵;𝜃𝜃−2, 𝑟𝑟𝑖𝑖𝜃𝜃2) (5B) 

or finally we use the mean-lambda parameterization of the inverse-Gaussian distribution, where 263 

dispersion 𝜃𝜃 is again the coefficient of variation  264 

Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖|𝐵𝐵 > 0) = 𝐼𝐼𝑛𝑛𝐼𝐼.𝐺𝐺𝑎𝑎𝐺𝐺𝑠𝑠𝑠𝑠𝑖𝑖𝑎𝑎𝑛𝑛(𝐵𝐵; 𝑟𝑟𝑖𝑖 ,𝜃𝜃−2). (5C) 

By contrast, the compound Poisson-gamma distribution replaces Eq. 4-5 with a single 265 

distribution for biomass 𝐵𝐵 266 

Pr(𝐵𝐵 = 𝑏𝑏𝑖𝑖) = 𝑇𝑇𝑤𝑤𝑇𝑇𝑇𝑇𝑑𝑑𝑖𝑖𝑇𝑇(𝐵𝐵;𝑎𝑎𝑖𝑖𝑑𝑑𝑖𝑖 ,𝜃𝜃,𝜙𝜙). (6) 

While estimating dispersion 𝜃𝜃 and power parameter 1 < 𝜙𝜙 < 2.  Lognormal, gamma, and 267 

inverse-Gaussian distributions are all parameterized such that 𝑟𝑟𝑖𝑖 represents the mean of positive-268 

catch rates, such that 𝑑𝑑𝑖𝑖 is the mean of expected catches for all distributions.  However, these 269 

distributions differ somewhat in how variance is assumed to vary as a function of the mean 270 

(“mean-variance relationship”).  Similarly, these distributions assign a greater or lesser 271 

probability to “extreme catches” (i.e., catches greater than ten times the expected value), and 272 

these “extreme catch events” are a well-known property of demersal fish surveys (Thorson et al., 273 

2011).  For example, the lognormal has skewness of 𝐶𝐶𝑉𝑉3 +  3𝐶𝐶𝑉𝑉 (where 𝐶𝐶𝑉𝑉 is the measurement 274 

error coefficient of variation) while the gamma has skewness of 2𝐶𝐶𝑉𝑉.  Given that the estimated 275 

𝐶𝐶𝑉𝑉 is typically above 1.0, these distributions can have substantially different skewness.  As a 276 

consequence, extremely high (or low) catches will have a greater “leverage” on predicted density 277 

for some distributions than others.   278 
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 All models adopt a predictive-process framework for predicting spatial and spatio-279 

temporal variation at the location 𝑠𝑠𝑖𝑖 of each sample 𝑖𝑖, or location 𝑠𝑠𝑔𝑔 of each extrapolation-grid 280 

cell 𝐿𝐿, given the value at 𝑛𝑛𝑠𝑠 knots (Banerjee et al., 2008). Specifically, we specify that the value 281 

of spatial and spatio-temporal variables at each knot follows a Gaussian Markov random field: 282 

𝛚𝛚𝑛𝑛~𝑀𝑀𝑉𝑉𝑀𝑀(𝟎𝟎,𝜎𝜎𝜔𝜔2𝐐𝐐𝑛𝑛
−1) 

𝛆𝛆𝑛𝑛(𝑡𝑡)~𝑀𝑀𝑉𝑉𝑀𝑀(𝟎𝟎,𝜎𝜎𝜀𝜀2𝐐𝐐𝑛𝑛
−1), 

(7) 

where 𝐐𝐐 is a sparse precision matrix that approximates a Matern correlation function with 283 

decorrelation rate 𝜅𝜅𝑛𝑛 that varies among linear predictors and a transformation matrix 𝐇𝐇 that 284 

approximates geometric anisotropy and is shared among linear predictors.  These spatial 285 

variables are then pre-multiplied by a matrix that represents bilinear interpolation (Lindgren and 286 

Rue, 2015): 287 

𝛚𝛚𝑛𝑛
∗ = 𝐀𝐀𝛚𝛚𝑛𝑛 

𝛆𝛆𝑛𝑛∗ (𝑡𝑡𝑖𝑖) = 𝐀𝐀𝛆𝛆𝑛𝑛(𝑡𝑡𝑖𝑖) 

(8) 

and where spatial and spatio-temporal variables are treated similarly for other linear predictors 288 

𝑤𝑤(𝑠𝑠, 𝑡𝑡) and 𝑑𝑑(𝑠𝑠, 𝑡𝑡).  Specifically, interpolation matrix 𝐀𝐀 has a row for each extrapolation-grid 289 

cell and a column for each knot.  It is nonzero for only three elements of each row (hence a 290 

“sparse” matrix), with nonzero values corresponding to the weight assigned to three vertices 291 

surrounding a given location when interpolating from three neighboring knots within a 292 

triangulated mesh.   293 

 Parameters are estimated by identifying the value of fixed effects that maximizes the 294 

marginal likelihood when integrated across random effects.  We approximate this 295 

multidimensional integral using the Laplace approximation, as implemented using Template 296 

Model Builder (Kristensen et al., 2016).  After identifying fixed effects, we then apply an 297 
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“empirical Bayes” estimator, which fixes random effects to their value that maximizes the joint 298 

likelihood conditional on estimated fixed effects.  Derived quantities can then be calculated from 299 

the maximum likelihood estimate of fixed effects and empirical Bayes estimate of random 300 

effects.  However, derived quantities that are calculated from a nonlinear transformation of 301 

random effects will be subject to “retransformation bias” when applying this naïve estimator.  302 

We therefore also apply the “epsilon bias-correction estimator” that corrects for the degree of 303 

nonlinearity and variance of random effects when calculating derived quantities, including 304 

biomass indices (Thorson and Kristensen, 2016).   305 

 To estimate parameters for these models the user must: 306 

1. Choose which probability distribution to use for the positive catches (lognormal, gamma, 307 

etc.); 308 

2. Choose the spatial resolution by specifying the number of interior knots 𝑛𝑛𝑚𝑚 to use, which are 309 

then augmented with boundary knots to determine the size of spatial and spatio-temporal 310 

random effects 𝑛𝑛𝑠𝑠; 311 

3. Choose whether to use the naïve or epsilon bias-correction estimator for derived quantities.   312 

We seek to provide generic guidance for these three decisions while using the “predictive 313 

process” and exploring outcomes with modeled spatial resolution ranging from 100, 250, and 314 

500 knots, 𝑛𝑛𝑚𝑚 = {100, 250, 500}.  315 

2.3 Case study design 316 
Reviews for recent stock assessments at the Alaska Fisheries Science Center (AFSC) have 317 

recommended further exploration of VAST regarding model specification.   We therefore 318 

conduct a case-study comparison of VAST models with design-based indices for twenty selected 319 

species in the Gulf of Alaska and eastern Bering Sea (see Table 1 for list).  The eastern Bering 320 

Sea has followed a fixed-station design for bottom-trawl samples using the 83-112 gear from 321 
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1982-2019, where the number of samples has increased over time from approximately 350 to 322 

375 per year (Lauth and Conner, 2016).  The Gulf of Alaska has followed a random stratified 323 

design for bottom trawl samples from 1984-2019, using the Poly Nor’eastern gear from 1990-324 

2019 and an earlier gear previously, sampling every third year from 1984-1999 and every second 325 

year from 1999-2019.  The number of samples per year varies from 500-850, and the sampling 326 

intensity for each strata varies among years following a Neyman design based on strata-specific 327 

catch rates in previous years for all species. The stratified design followed an approximately 328 

consistent footprint for most years except for 2001 when the eastern Gulf of Alaska was not 329 

sampled, and also in other years when deep-water strata were dropped due to funding limitations 330 

(von Szalay and Raring, 2016).   331 

 For each of these stocks, we first fit model-based estimators that include only the annual 332 

intercept in each year (𝛽𝛽) and exclude the spatial and spatio-temporal terms (𝜔𝜔 and 𝜀𝜀), resulting 333 

in a simple unstratified delta-model.  We do not expect this specification of model-based indices 334 

to accurately measure population biomass because this specification ignores spatial stratification 335 

and other concerns about sampling design.  However, we compare model-based indices for 336 

alternative models to demonstrate the extent to which index scale can differ even when fitting a 337 

simple index model.   338 

For each stock, we next extract a design-based estimator using standard protocols and 339 

software for these two regions (Wakabayashi et al., 1985).  We compare these with spatio-340 

temporal model-based estimators that extrapolate density to the “standard” footprint of these 341 

surveys.  The spatio-temporal estimator specifically predicts density at the centroid of grid cells 342 

within a 2km by 2km square extrapolation-grid that serves as “quadrature points” for integrating 343 

across density.  This includes 36,140 grid cells for the “Eastern Bering Sea” extrapolation-grid 344 
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and 23,339 grid cells for the “Gulf of Alaska” extrapolation-grid; each is included in package 345 

VAST and was developed previously by Angie Grieg (personal communication; retired from 346 

Alaska Fisheries Science Center).  We expect that these spatio-temporal model-based estimators 347 

will appropriately account for spatial variation in inclusion probability (i.e., due to stratified 348 

sampling) given that this probability-sampling design is constructed based on results for a wide 349 

variety of species and is likely to be independent of density for any single species (Conn et al., 350 

2017).   351 

The design-based estimator will be an unbiased estimator for the portion of population 352 

biomass that is available to the survey in each year.  We acknowledge that the design-based 353 

estimator will in many cases not be an accurate representation of fully-selected abundance or 354 

biomass, e.g., in cases when the stock moves into and out of the spatial footprint of a single 355 

survey (Ianelli et al., 2019), moves vertically out of the area accessible to bottom trawls 356 

(Kotwicki et al., 2015), or moves into areas where gear performs poorly (Thorson et al., 2013).  357 

Previous studies have evaluated performance for spatio-temporal models via comparison to 358 

stock-assessment model output (e.g., Cao et al., 2017; Thorson and Haltuch, 2018), but have not 359 

used a simulation experiment to compare performance against the scale of design-based indices.  360 

We therefore evaluate the model performance for estimating population scale relative to design-361 

based indices by we calculating the average across 𝑛𝑛𝑡𝑡 years for both the design-based index 𝐵𝐵� =362 

1
𝑛𝑛𝑡𝑡
∑ 𝐵𝐵𝑡𝑡
𝑛𝑛𝑡𝑡
𝑡𝑡=1  and each model-based index 𝐼𝐼 ̅ = 1

𝑛𝑛𝑡𝑡
∑ 𝐼𝐼𝑡𝑡
𝑛𝑛𝑡𝑡
𝑡𝑡=1 .  We then calculate the ratio of these two 363 

averages 𝑅𝑅 = 𝐼𝐼/̅𝐵𝐵�  and record this ratio for each species and model specification, for each model 364 

resolution and when using either the naïve or epsilon-bias correction estimator.  We seek to 365 

determine what model specification results in a similar scale to design-based indices and 366 
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therefore identify a well performing model as one with a ratio 𝑅𝑅 that is evenly distributed around 367 

one, indicating that the scale is similar on average to the scale of the design-based index.   368 

For each model and spatial resolution, we also calculate the Akaike Information Criterion 369 

(AIC), calculated using the Laplace approximation to the marginal likelihood and the number of 370 

fixed effects.  We specifically seek to determine whether AIC consistently favors any model 371 

specification, and if the model specification selected using this criteria varies with changes in 372 

spatial resolution.   373 

2.4 Design for factorial simulation experiment  374 
We also explore model performance by conducting a 4×4 factorial design of all four model 375 

specifications as both operating model and estimation model, when fixed and random effects for 376 

each operating model are determined by fitting them to the bottom trawl survey data for Pacific 377 

cod in the Gulf of Alaska.  We note that the epsilon bias-correction estimator is computationally 378 

expensive using the predictive-process model formulation, and therefore facilitate parameter 379 

estimation within the replicated design by decreasing the number of extrapolation-grid cells.  We 380 

specifically use a k-means algorithm to identify 2000 locations, and calculate their area as the 381 

sum of areas for those extrapolation-grid cells that are nearest to each.  This procedure therefore 382 

integrates across density using 2000 “quadrature points” rather than the original 36,140 383 

extrapolation-grid cells.  This decreases the spatial resolution used when integrating density, and 384 

substantially reduces computation time in particular during the epsilon bias-correction estimator.  385 

By using this new technique for both the estimation and operating model, we decrease the time 386 

required for each simulation replicate by approximately 75%, and exploratory testing confirms 387 

that it does not introduce any bias when applied to both estimation and operating models.   388 

 We evaluate model performance by recording the true biomass 𝐵𝐵�𝑚𝑚𝑚𝑚𝑡𝑡 in each operating 389 

model 𝐿𝐿, simulation replicate 𝑟𝑟, and year 𝑡𝑡, and comparing this true biomass with the estimated 390 
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biomass 𝐼𝐼𝑚𝑚𝑚𝑚𝑡𝑡𝑑𝑑 for each each replicate, operating model, year, and estimation model 𝑑𝑑.  We 391 

specifically calculate relative error 𝐸𝐸𝑚𝑚,𝑚𝑚,𝑡𝑡,𝑑𝑑 = �𝐼𝐼𝑚𝑚,𝑚𝑚,𝑡𝑡,𝑑𝑑 − 𝐵𝐵�𝑚𝑚,𝑚𝑚,𝑡𝑡� 𝐵𝐵�𝑚𝑚,𝑚𝑚,𝑡𝑡�  and then visualize the 392 

average relative error across all years and replicates for a given operating and estimation model.  393 

A well-performing model will have a relative error centered on zero and a low root-mean-394 

squared relative error.  In particular a minimax estimator suggests that the best model is that 395 

which minimizes the maximum error across all model scenarios (Lehmann and Casella, 1998 pg. 396 

309), in this case constituted by the four operating models.  397 

 We also evaluate model performance by calculating the correlation between the natural 398 

logarithm of true density (from the operating model) and predicted density (from the estimation 399 

model).  In particular, we calculate the correlation separately for each year, and then average 400 

across years for a given simulation replicate; this calculation emphasizes model performance in 401 

identifying areas with high or low density.  This comparison specifically addresses whether a 402 

particular estimation model performs better or worse at identifying spatial variation in density; 403 

we speculate that a different estimation model might be appropriate for accurately estimating 404 

spatial variation vs. estimating the scale when integrating across space for calculating an 405 

abundance index.   406 

3. Results 407 

 Applying a nonspatial delta-model to biomass samples for twenty species in the Gulf of 408 

Alaska and eastern Bering Sea shows many cases where model specification has large effects on 409 

resulting index variability and scale (Fig. 1).  For example, Sebastes polyspinus in the Gulf of 410 

Alaska shows an approximately stable index using the lognormal delta-model and an increasing 411 

trend for the inverse-Gaussian.  By contrast, both gamma and Tweedie models show large spikes 412 

in estimated abundance in 2001 and 2013, and agree with the lower abundance in 2015-2019 413 
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estimated by the lognormal distribution rather than the elevated estimates of the inverse-414 

Gaussian.  Similarly, S. alutus in the Gulf of Alaska and both Lepidopsetta polyxystra and 415 

Limanda aspera in the eastern Bering Sea show similar indices for gamma and Tweedie models, 416 

but differ from indices arising from either lognormal or inverse-Gaussian distributions.  These 417 

and other examples show that sensitivity to the assumed distribution of positive catch rates is a 418 

general characteristic of delta-models, rather than an issue specifically with spatio-temporal 419 

delta-models. 420 

 Next we compare spatio-temporal indices using three resolutions (100, 250, or 500 knots) 421 

with design-based indices.  Illustrating results for three selected species shows that gamma and 422 

Tweedie models generate similar indices, which are also similar in terms of both variability and 423 

trend to the design-based indices (Fig. 2).  However, models with lower resolutions (100 knots) 424 

tend to estimate a higher scale than increased resolutions (250 or 500 knots) or the design-based 425 

indices.  For these species, the inverse-Gaussian and lognormal models produce indices that 426 

show similar index trends and variability to other models and design-based indices, but differ 427 

greatly in terms of scale as a function of the specified spatial resolution.   428 

Notably, AIC selects the lognormal and inverse-Gaussian for 8-11 of the twenty species 429 

for these three resolutions (Fig. 3), and often selects the lognormal even for species where the 430 

Tweedie and gamma result in indices that have an index scale more similar to design-based 431 

indices (e.g., Sebastes alutus in the Gulf of Alaska in Fig. 2).  Specifically, the ratio of average 432 

biomass for model-and design-based indices is 0.98 and 1.01 when using bias-correction and 433 

high resolution for the gamma and Tweedie models, while this ratio is 1.23 and 1.60 for the 434 

lognormal and inverse-Gaussian models (Fig. 4, black numbers in right column).  The difference 435 

between design- and model-based scale increases for the gamma and Tweedie models either 436 
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without epsilon bias-correction (e.g., red values in Fig. 4), or with decreasing resolution (e.g., left 437 

and middle columns in Fig. 4).   438 

Finally, the factorial simulation design confirms that models generally have good 439 

performance (i.e., small bias and low root-mean-squared error) when the simulation and 440 

estimation model have matching specification (i.e., diagonal panels in Fig. 5).  However, the 441 

estimation models (Fig. 5 columns) differ greatly in terms of average performance when applied 442 

to data from a mis-specified simulation model. For example, the inverse-Gaussian estimation 443 

model has poor performance (e.g., large positive bias) when applied to data simulated using a 444 

gamma or Tweedie distribution, and the lognormal distribution also shows a smaller but still 445 

substantial positive bias for these operating models.  By contrast, the gamma and Tweedie 446 

estimation models have a bias between -4 to +1% when applied to data for any of the operating 447 

models.  We therefore conclude that both gamma and Tweedie estimation models are identified 448 

by a “minimax” estimator as the estimation models that minimizes the maximum error across 449 

alternative operating models.  By contrast, the lognormal estimation model performs somewhat 450 

better than the gamma and Tweedie models with respect to the correlation between true and 451 

estimated density, particularly when fitted to data generated by an inverse-Gaussian distribution 452 

(Fig. 6).  However, we note that all three distributions all do well in general as estimation models 453 

(correlation > 0.84 for each operating model).  We therefore conclude that the optimal 454 

distribution for estimating spatial variation in density will in some cases be different than the 455 

optimal distribution for estimating the scale of an abundance index that is in agreement with a 456 

design-based estimator.     457 
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4. Discussion 458 

 In this study, we have shown that delta-gamma and Tweedie distributions result in a 459 

similar scale for model-based abundance indices as design-based indices for twenty stocks in the 460 

North Pacific.  Results also highlight that index scale is sensitive to the number of knots used to 461 

approximate spatial variation within a spatio-temporal model when using a naïve estimator, but 462 

this sensitivity is mitigated when using the epsilon bias-correction estimator that accounts for 463 

retransformation bias.  Using the highest resolution and bias-correction estimator, the delta-464 

gamma and Tweedie models have an average ratio of 0.98 and 1.01 relative to design-based 465 

indices, indicating that they have a similar scale on average to a design-based estimator. When 466 

averaging design and model-based indices across years, the root-mean-squared log-ratio between 467 

these averages is 0.16 and 0.24, respectively.  This suggests that the difference in scale (i.e., 468 

difference in average value for design- and model-based indices for a given species) is 469 

approximately 20% between these alternative approaches.  Similarly, a factorial simulation 470 

design suggests that delta-gamma and Tweedie models have minimal error even for data 471 

simulated using other distributions, and therefore minimize the maximum error arising from 472 

these candidate forms of model mis-specification.  This result is similar to classical statistical 473 

studies aimed at comparing lognormal and gamma distributions within generalized linear models 474 

in general (Firth, 1988; Wiens, 1999). Finally, the lognormal distribution performs best 475 

(followed closely by gamma and Tweedie models) at estimating spatial variation in density, 476 

indicating that difficulties in estimating index scale are largely separate from model ability to 477 

accurately identify spatial variation in density.    478 

 Spatio-temporal models fitted to biomass samples are already seeing widespread use in 479 

stock, ecosystem, habitat, and climate-vulnerability assessments (Thorson, 2019a).  In particular, 480 
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model-based indices can be generated using data that do not strictly follow a probabilistic design 481 

(Ye and Dennis, 2009), or can account for failures to consistently implement a planned design. 482 

However, there is more to learn regarding the expected performance of delta-models when the 483 

estimation model is mis-specified with respect to the data-generating process.  In particular, we 484 

are surprised by the strong dependence of abundance-index scale upon the choice of probability 485 

distribution for positive catch rates.  Previous simulation studies have not highlighted this model 486 

sensitivity because they: (1) focused on the proportionality of index estimates and true 487 

abundance and thereby ignored scale (Dick, 2004; Thorson et al., 2015); (2) eliminated model 488 

mis-specification by using the same distribution for generating and estimation (Johnson et al., 489 

2019); (3) explored bias for a single class of delta-model without comparing performance across 490 

distributions (Myers and Pepin, 1990; Smith, 1990); (4) focused simulation testing on features 491 

other than the process used to generate data used in index standardization (Berg et al., 2014; Lo 492 

et al., 1992); or (5) did not document this mismatch in scale even when the estimation and 493 

simulation models were mismatched (Ono et al., 2015).  We recommend further testing of delta-494 

models using a variety of operating models, including individual- and agent-based models whose 495 

properties will not exactly match any simple estimation model.  Using a variety of operating 496 

models will allow a more complete picture of the magnitude of errors arising from mis-497 

specifying the distribution for positive catch rates.  We also recommend further exploration of 498 

optimal ways of generating the SPDE mesh used in INLA and VAST; we have not explored this 499 

in detail here, but it could be one line of research to explore the sensitivity of index scale to the 500 

specified resolution.   501 

The appropriate use of information criteria such as AIC in hierarchical (e.g., spatio-502 

temporal) models is an unresolved topic in statistics due to the difficulty in estimating the 503 
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effective degrees of freedom associated with random-effects that are shrunk towards zero 504 

(Hodges and Sargent, 2001; Wikle et al., 2019 Chapter 6).  Marginal AIC is defined as the AIC 505 

score when counting only fixed effects, while conditional AIC is defined as AIC while partially 506 

counting random effects based on their estimated variance (Vaida and Blanchard, 2005).  Both 507 

marginal and conditional AIC have known types of poor behavior for mixed-effects models 508 

(Greven and Kneib, 2010), and our results confirm poor behavior for marginal AIC, which 509 

tended to select the lognormal distribution even in cases when its scale differed greatly from a 510 

design-based estimate.  Multiple methods have also been proposed to improve performance for 511 

marginal and conditional AIC (Müller et al., 2013; Watanabe, 2013). For example, Shang and 512 

Cavanaugh (2008) developed a bootstrap method to calculate a more appropriate penalty term, 513 

Sakamoto (2019) developed a computationally efficient approach to correct for issues in the 514 

marginal AIC, and Grevin and Kneib (2010) developed an analytic correction to the conditional 515 

AIC.   516 

In addition to model selection, new GLMM methods can allow for more rigorous model 517 

validation though hypothesis testing. The DHARMa R package  (Hartig, 2017) offers a suite of 518 

tests and validation diagnostics to evaluate uniform residuals calculated from the empirical 519 

distribution function of simulated values for an observation evaluated at the observation value. 520 

One-step-ahead residuals are calculated iteratively by evaluating marginal likelihoods of 521 

observation subsets against predicted values (Thygesen et al., 2017).  Residuals can be compared 522 

with specified distributions using tests such as the Shapiro-Wilk, Komogoroc-Smirnov or 523 

Anderson-Darling hypothesis tests. However, we recommend further research regarding 524 

quantitative tools for model selection and validation, to automate the process of identifying an 525 

appropriate distribution for positive catch rates in spatio-temporal delta-models.   526 
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We also recommend continued research to identify delta-model specifications that are 527 

less sensitive to likelihood choice. One idea is to develop and implement new generalized 528 

distributions in VAST that contain common distributions as nested submodels, thereby replacing 529 

a (categorical) model selection with (continuous) parameter estimation. Hvingel et al. (2012) 530 

used the generalized gamma distribution, which adds a third parameter to the gamma and 531 

contains the lognormal, gamma, Weibull, and exponential distributions as special cases (Stacy, 532 

1962).  This distribution is difficult to fit because its parameters are highly correlated (Stacy and 533 

Mihram, 1965), although there has also been some success with reparameterizations (Prentice, 534 

1974).  An alternative approach would be to use robust estimators that are designed to be 535 

insensitive to data drawn from a range of distributions (Maronna et al., 2019).  Conceptually, a 536 

robust delta-lognormal estimator would minimize sensitivity to outliers, thereby serving as a 537 

reliable default. Some theoretical and simulation work has shown promise for models without 538 

covariates or other effects like space (Rosales, 2009), but research is needed to extend robust 539 

estimators to mixed-effects models like VAST. We encourage future studies to investigate these 540 

ideas as potential solutions to make estimation of absolute indices more stable and reliable. 541 

Whether to use a model- or design-based survey index in a given stock assessment 542 

depends in part upon how the resulting index is subsequently treated within the assessment 543 

model.  In particular, it depends upon whether the index is viewed as absolute (i.e., the 544 

catchability coefficient is fixed a priori), or if the survey index is treated as relative and the 545 

parameter(s) describing survey catchability are estimated. Differences in index trend between 546 

model and design-based indices would be important regardless of how the catchability 547 

coefficient is treated, but large differences in trend were not observed among estimation spatio-548 

temporal delta-model specifications explored (e.g., Fig. 2). Differences in index scale between 549 
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model and design-based indices are important if the assessment treats the index as absolute, but 550 

have limited impact on model results if the catchability coefficient is freely estimated. In 551 

practice, bottom trawl survey biomass indices at the AFSC typically fall somewhere on a 552 

continuum between absolute (q fixed at 1) and relative (q freely estimated) indices, with several 553 

assessments residing somewhere in between by specifying informative priors or likelihood 554 

penalties for 𝑞𝑞 (Table 1). Delta-models using a gamma or Tweedie distribution generally differ 555 

from the design-based index scale by 10%, and this is usually within the standard deviation of 556 

the prior distribution assumed in Alaskan groundfish assessment models implementing an 557 

informative prior for 𝑞𝑞 (Table 1).   558 

Based upon our results and in light of issues noted above, we recommend the following 559 

practices when using spatio-temporal delta-models to generate abundance indices for use in stock 560 

assessments: 561 

1. Compare model-based index scale with design-based indices when possible:  Most 562 

importantly, our simulation and case-study examples highlight that the choice of distribution 563 

for positive catch rates can have large effect on estimated scale.  In most cases, we envision 564 

that analysts will trust the scale from a design-based estimator, and that similarity in scale 565 

could be one criterion (among others) for selecting among potential distributions. 566 

2. Use the gamma or Tweedie distributions by default when it is not possible to compare with 567 

design-based scale:  In other cases, a design-based estimator may not be feasible, either 568 

because the data are opportunistic (i.e., fishery-dependent catches), the survey substantially 569 

departed from the planned design (i.e., a vessel broke down), or the design is not sufficient 570 

for inference about a given stock (i.e., data from multiple designs must be combined).  In 571 
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these cases, our simulation experiment suggests that the gamma or Tweedie distribution have 572 

reasonable performance across a range of data-generating mechanisms.   573 

3. Correct for retransformation bias using the epsilon estimator:  Our case-study results suggest 574 

that the epsilon bias-correction estimator (Thorson and Kristensen, 2016) results in a much 575 

better match between model- and design-based index scale than the naïve empirical Bayes 576 

estimator, and decreases sensitivity to model resolution.   577 

4. Do not assume that AIC is the only criterion for model performance:  Our results also suggest 578 

that AIC will select the lognormal distribution even in cases where it has poor match to the 579 

scale of the design-based index.  We therefore recommend multiple considerations (including 580 

index scale and diagnostics) when selecting a model.  We also recommend future research to 581 

develop automated approaches to calculate conditional AIC for models implemented in 582 

Template Model Builder, including the VAST model used here.  This development would 583 

then allow for a detailed performance comparison between marginal and AIC for index-584 

standardization models. 585 

5. Consider assessment-model structure when deciding between model- and design-based 586 

indices:  Finally, we note a variety of practices for treating the catchability coefficient for 587 

stock assessments in the North Pacific, and suspect that this same variation arises in other 588 

management regions.  Eight of the twenty case-study species use a catchability coefficient 589 

that is fixed a priori, and these assessments are likely to be highly sensitive to differences in 590 

index scale.  In cases where a design-based index is available and believed to measure total 591 

abundance/biomass for a fully-selected age/length class (i.e., not missing entire spatial strata 592 

due to operational problems or gear restrictions), we encourage analysts to compare the scale 593 

of model-based indices with that of design-based indices and use this information to inform 594 
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their choice of which method to use.  Six assessments estimate the catchability coefficient 595 

freely, and index scale will have no effect for these assessments; in these cases, comparison 596 

of scale between model- and design-based indices could be used as a diagnostic of the spatio-597 

temporal model, but will have direct impact on assessment-model results.  Finally, six are 598 

estimated with a prior or penalty, and prior/penalty standard deviation is typically larger than 599 

the expected difference in scale between model- and design-based indices for gamma and 600 

Tweedie distributions.  In summary, we recommend that the index scale be compared 601 

between model- and design-based indices in all three cases.  However, the match in scale is 602 

most important for assessments that assume a fixed catchability coefficient, and is relevant to 603 

consider in cases where the design-based index is believed to measure total 604 

abundance/biomass for a fully-selected age or length-class.  We recognize that this 605 

recommendation requires contextual information to interpret, and recommend further 606 

research regarding situations when a model-based index is likely to provide a more useful 607 

estimate of scale (whether due to improved precision, accounting for densities in areas that 608 

are not measured within a design-based estimator, or other reasons).   609 

Finally, we continue to recommend that regional authorities for scientific review establish 610 

regional “Terms of Reference” (Thorson, 2019a) such that criteria for model specification are 611 

clear, transparent, and easily replicated for any stock assessment within a given region.   612 

5. Acknowledgements 613 

We thank Kasper Kristensen, Hans Skaug, and the TMB development team, without which 614 

VAST would not be computationally feasible.  We also thank the many scientists and volunteers 615 

who have contributed to the bottom trawl surveys in the Gulf of Alaska and eastern Bering Sea 616 



29 
 

shelf.  Finally, we thank Lewis Barnett, C. O’Leary, and two anonymous reviewers for helpful 617 

comments on an earlier draft. 618 

6.  References 619 
Aitchison, J., 1955. On the Distribution of a Positive Random Variable Having a Discrete Probability Mass 620 

at the Origin. J. Am. Stat. Assoc. 50, 901. https://doi.org/10.2307/2281175 621 
Aitchison, J., Brown, J.A., 1957. The lognormal distribution with special reference to its uses in 622 

economics. Cambridge University Press, Cambridge, MA. 623 
Akaike, H., 1974. New look at statistical-model identification. IEEE Trans. Autom. Control AC19, 716–723. 624 
Arreguín-Sánchez, F., 1996. Catchability: a key parameter for fish stock assessment. Rev. Fish Biol. Fish. 625 

6, 221–242. https://doi.org/10.1007/BF00182344 626 
Banerjee, S., Carlin, B.P., Gelfand, A.E., 2003. Hierarchical modeling and analysis for spatial data, 1st ed. 627 

Chapman & Hall/CRC, Boca Raton, FL. 628 
Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H., 2008. Gaussian predictive process models for large 629 

spatial data sets. J. R. Stat. Soc. Ser. B Stat. Methodol. 70, 825–848. 630 
https://doi.org/10.1111/j.1467-9868.2008.00663.x 631 

Berg, C.W., Nielsen, A., Kristensen, K., 2014. Evaluation of alternative age-based methods for estimating 632 
relative abundance from survey data in relation to assessment models. Fish. Res. 151, 91–99. 633 
https://doi.org/10.1016/j.fishres.2013.10.005 634 

Bryan, M.D., 2017. Assessment of the northern and southern rock sole (Lepidopsetta polyxstra and 635 
bilineata) stocks in the Gulf of Alaska (NPFMC Bering Sea and Aleutian Islands SAFE). North 636 
Pacific Fishery Management Council, Anchorage, AK. 637 

Burnham, K.P., Anderson, D., 2002. Model Selection and Multi-Model Inference, 2nd ed. Springer, New 638 
York. 639 

Cao, J., Thorson, J.T., Richards, R.A., Chen, Y., 2017. Spatiotemporal index standardization improves the 640 
stock assessment of northern shrimp in the Gulf of Maine. Can. J. Fish. Aquat. Sci. 74, 1781–641 
1793. https://doi.org/10.1139/cjfas-2016-0137 642 

Cochran, W.G., 1977. Sampling Techniques, 3rd Edition, 3rd ed. John Wiley & Sons. 643 
Conn, P.B., Thorson, J.T., Johnson, D.S., 2017. Confronting preferential sampling when analysing 644 

population distributions: diagnosis and model-based triage. Methods Ecol. Evol. 8, 1535–1546. 645 
https://doi.org/10.1111/2041-210X.12803 646 

Cordue, P.L., 2007. A note on non-random error structure in trawl survey abundance indices. ICES J. 647 
Mar. Sci. 64, 1333–1337. https://doi.org/10.1093/icesjms/fsm134 648 

Cosandey-Godin, A., Krainski, E.T., Worm, B., Flemming, J.M., 2014. Applying Bayesian spatiotemporal 649 
models to fisheries bycatch in the Canadian Arctic. Can. J. Fish. Aquat. Sci. 72, 186–197. 650 
https://doi.org/10.1139/cjfas-2014-0159 651 

Cressie, N., Wikle, C.K., 2011. Statistics for spatio-temporal data. John Wiley & Sons, Hoboken, New 652 
Jersey. 653 

Dick, E.J., 2004. Beyond “lognormal versus gamma”: discrimination among error distributions for 654 
generalized linear models. Fish. Res. 70, 351–366. https://doi.org/10.1016/j.fishres.2004.08.013 655 

Firth, D., 1988. Multiplicative Errors: Log-Normal or Gamma? J. R. Stat. Soc. Ser. B Methodol. 50, 266–656 
268. https://doi.org/10.1111/j.2517-6161.1988.tb01725.x 657 

Foster, S.D., Bravington, M.V., 2013. A Poisson–Gamma model for analysis of ecological non-negative 658 
continuous data. Environ. Ecol. Stat. 20, 533–552. https://doi.org/10.1007/s10651-012-0233-0 659 



30 
 

Greven, S., Kneib, T., 2010. On the behaviour of marginal and conditional AIC in linear mixed models. 660 
Biometrika 97, 773–789. https://doi.org/10.1093/biomet/asq042 661 

Hartig, F., 2017. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R 662 
Package Version 01 5. 663 

Hodges, J.S., Sargent, D.J., 2001. Counting degrees of freedom in hierarchical and other richly-664 
parameterised models. Biometrika 88, 367–379. https://doi.org/10.1093/biomet/88.2.367 665 

Hvingel, C., Kingsley, M.C.S., Sundet, J.H., 2012. Survey estimates of king crab (Paralithodes 666 
camtschaticus) abundance off northern Norway using GLMs within a mixed generalized gamma-667 
binomial model and Bayesian inference. ICES J. Mar. Sci. 69, 1416–1426. 668 
https://doi.org/10.1093/icesjms/fss116 669 

Ianelli, J.N., Fissel, B., Holsman, K., Honkalehto, T., Kotwicki, S., Monnahan, C., Siddon, E., Stienessen, S., 670 
Thorson, J.T., 2019. Assessment of the walleye pollock stock in the Eastern Bering Sea (NPFMC 671 
Bering Sea and Aleutian Islands SAFE). North Pacific Fishery Management Council, Anchorage, 672 
AK. 673 

Johnson, K.F., Thorson, J.T., Punt, A.E., 2019. Investigating the value of including depth during 674 
spatiotemporal index standardization. Fish. Res. 216, 126–137. 675 
https://doi.org/10.1016/j.fishres.2019.04.004 676 

Kotwicki, S., Horne, J.K., Punt, A.E., Ianelli, J.N., 2015. Factors affecting the availability of walleye pollock 677 
to acoustic and bottom trawl survey gear. ICES J. Mar. Sci. J. Cons. 72, 1425–1439. 678 

Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., Bell, B.M., 2016. TMB: Automatic differentiation and 679 
Laplace approximation. J. Stat. Softw. 70, 1–21. https://doi.org/10.18637/jss.v070.i05 680 

Lambert, D., 1992. Zero-Inflated Poisson Regression, With an Application to Defects in Manufacturing. 681 
Technometrics 34, 1–14. https://doi.org/10.1080/00401706.1992.10485228 682 

Lauth, R.R., Conner, J., 2016. Results of the 2013 eastern Bering Sea continental shelf bottom trawl 683 
survey of groundfish and invertebrate resources (NOAA Technical Memorandum No. NMFS-684 
AFSC-331). Alaska Fisheries Science Center, Seattle, WA. 685 

Lehmann, E.L., Casella, G., 1998. Theory of Point Estimation, 2nd edition. ed. Springer, New York. 686 
Lindgren, F., Rue, H., 2015. Bayesian spatial modelling with r-inla. J. Stat. Softw. 63, 1–25. 687 

https://doi.org/10.18637/jss.v063.i19 688 
Lo, N.C., Jacobson, L.D., Squire, J.L., 1992. Indices of Relative Abundance from Fish Spotter Data based 689 

on Delta-Lognormal Models. Can. J. Fish. Aquat. Sci. 49, 2515–2526. 690 
Maronna, R.A., Martin, R.D., Yohai, V.J., Salibián-Barrera, M., 2019. Robust Statistics: Theory and 691 

Methods, 2 edition. ed. Wiley, Hoboken, NJ. 692 
Maunder, M.N., Punt, A.E., 2004. Standardizing catch and effort data: a review of recent approaches. 693 

Fish. Res. 70, 141–159. https://doi.org/10.1016/j.fishres.2004.08.002 694 
Methot, R.D., 2009. Stock Assessment: Operational Models in Support of Fisheries Management, in: 695 

Beamish, R.J., Rothschild, B.J. (Eds.), The Future of Fisheries Science in North America. Springer 696 
Netherlands, Dordrecht, pp. 137–165. 697 

Mitchell, E.M., Lyles, R.H., Schisterman, E.F., 2015. Positing, fitting, and selecting regression models for 698 
pooled biomarker data. Stat. Med. 34, 2544–2558. https://doi.org/10.1002/sim.6496 699 

Müller, S., Scealy, J.L., Welsh, A.H., 2013. Model Selection in Linear Mixed Models. Stat. Sci. 28, 135–167. 700 
https://doi.org/10.1214/12-STS410 701 

Myers, R.A., Pepin, P., 1990. The robustness of lognormal-based estimators of abundance. Biometrics 702 
46, 1185–1192. 703 

Ng, V.K.Y., Cribbie, R.A., 2017. Using the Gamma Generalized Linear Model for Modeling Continuous, 704 
Skewed and Heteroscedastic Outcomes in Psychology. Curr. Psychol. 36, 225–235. 705 
https://doi.org/10.1007/s12144-015-9404-0 706 



31 
 

NPFMC, 2019a. Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the 707 
Gulf of Alaska. North Pacific Fishery Management Council, Anchorage, AK. 708 

NPFMC, 2019b. Stock Assessment and Fishery Evaluation Report for the Groundfish Resources of the 709 
Bering Sea and Aleutian Islands Region. North Pacific Fishery Management Council, Anchorage, 710 
AK. 711 

Ono, K., Punt, A.E., Hilborn, R., 2015. Think outside the grids: An objective approach to define spatial 712 
strata for catch and effort analysis. Fish. Res. 170, 89–101. 713 
https://doi.org/10.1016/j.fishres.2015.05.021 714 

Pennington, M., 1983. Efficient Estimators of Abundance, for Fish and Plankton Surveys. Biometrics 39, 715 
281–286. 716 

Petitgas, P., 2001. Geostatistics in fisheries survey design and stock assessment: models, variances and 717 
applications. Fish Fish. 2, 231–249. 718 

Prentice, R.L., 1974. A Log Gamma Model and Its Maximum Likelihood Estimation. Biometrika 61, 539–719 
544. https://doi.org/10.2307/2334737 720 

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for 721 
Statistical Computing, Vienna, Austria. 722 

Rosales, M.A.C., 2009. The Robustness of Confidence Intervals for the Mean of Delta Distribution. 723 
Western Michigan University. 724 

Sakamoto, W., 2019. Bias-reduced marginal Akaike information criteria based on a Monte Carlo method 725 
for linear mixed-effects models. Scand. J. Stat. 46, 87–115. 726 

Schwarz, G., 1978. Estimating the Dimension of a Model. Ann. Stat. 6, 461–464. 727 
https://doi.org/10.1214/aos/1176344136 728 

Shang, J., Cavanaugh, J.E., 2008. Bootstrap variants of the Akaike information criterion for mixed model 729 
selection. Comput. Stat. Data Anal. 52, 2004–2021. https://doi.org/10.1016/j.csda.2007.06.019 730 

Shelton, A.O., Thorson, J.T., Ward, E.J., Feist, B.E., 2014. Spatial semiparametric models improve 731 
estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. 732 
https://doi.org/10.1139/cjfas-2013-0508 733 

Smith, S.J., 1990. Use of statistical models for the estimation of abundance from groundfish trawl survey 734 
data. Can. J. Fish. Aquat. Sci. 47, 894–903. 735 

Stacy, E.W., 1962. A Generalization of the Gamma Distribution. Ann. Math. Stat. 33, 1187–1192. 736 
https://doi.org/10.1214/aoms/1177704481 737 

Stacy, E.W., Mihram, G.A., 1965. Parameter Estimation for a Generalized Gamma Distribution. 738 
Technometrics 7, 349–358. https://doi.org/10.1080/00401706.1965.10490268 739 

Stefansson, G., 1996. Analysis of groundfish survey abundance data: combining the GLM and delta 740 
approaches. ICES J Mar Sci 53, 577–588. 741 

Syrjala, S.E., 2000. Critique on the use of the delta distribution for the analysis of trawl survey data. ICES 742 
J. Mar. Sci. 57, 831–842. https://doi.org/10.1006/jmsc.2000.0571 743 

Thompson, G., Thorson, J.T., 2019. Assessment of the Pacific cod stock in the Eastern Bering Sea. In 744 
Stock assessment and fishery evaluation report for the groundfish resources of the Bering Sea 745 
and Aleutian Islands (NPFMC Bering Sea and Aleutian Islands SAFE). North Pacific Fishery 746 
Management Council, Anchorage, AK. 747 

Thorson, J.T., 2019a. Guidance for decisions using the Vector Autoregressive Spatio-Temporal (VAST) 748 
package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161. 749 
https://doi.org/10.1016/j.fishres.2018.10.013 750 

Thorson, J.T., 2019b. Perspective: Let’s simplify stock assessment by replacing tuning algorithms with 751 
statistics. Fish. Res., Recruitment: Theory, Estimation, and Application in Fishery Stock 752 
Assessment Models 217, 133–139. https://doi.org/10.1016/j.fishres.2018.02.005 753 



32 
 

Thorson, J.T., 2018. Three problems with the conventional delta-model for biomass sampling data, and a 754 
computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369–1382. 755 
https://doi.org/10.1139/cjfas-2017-0266 756 

Thorson, J.T., Barnett, L.A.K., 2017. Comparing estimates of abundance trends and distribution shifts 757 
using single- and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–758 
1321. https://doi.org/10.1093/icesjms/fsw193 759 

Thorson, J.T., Haltuch, M.A., 2018. Spatiotemporal analysis of compositional data: increased precision 760 
and improved workflow using model-based inputs to stock assessment. Can. J. Fish. Aquat. Sci. 761 
1–14. https://doi.org/10.1139/cjfas-2018-0015 762 

Thorson, J.T., Kristensen, K., 2016. Implementing a generic method for bias correction in statistical 763 
models using random effects, with spatial and population dynamics examples. Fish. Res. 175, 764 
66–74. https://doi.org/10.1016/j.fishres.2015.11.016 765 

Thorson, J.T., M. Elizabeth, C., Stewart, I.J., Punt, A.E., 2013. The implications of spatially varying 766 
catchability on bottom trawl surveys of fish abundance: a proposed solution involving 767 
underwater vehicles. Can. J. Fish. Aquat. Sci. 70, 294–306. 768 

Thorson, J.T., Shelton, A.O., Ward, E.J., Skaug, H.J., 2015. Geostatistical delta-generalized linear mixed 769 
models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. 770 
Mar. Sci. J. Cons. 72, 1297–1310. https://doi.org/10.1093/icesjms/fsu243 771 

Thorson, J.T., Stewart, I.J., Punt, A.E., 2011. Accounting for fish shoals in single-and multi-species survey 772 
data using mixture distribution models. Can. J. Fish. Aquat. Sci. 68, 1681–1693. 773 

Thygesen, U.H., Albertsen, C.M., Berg, C.W., Kristensen, K., Nielsen, A., 2017. Validation of ecological 774 
state space models using the Laplace approximation. Environ. Ecol. Stat. 24, 317–339. 775 
https://doi.org/10.1007/s10651-017-0372-4 776 

Vaida, F., Blanchard, S., 2005. Conditional Akaike information for mixed-effects models. Biometrika 92, 777 
351–370. 778 

von Szalay, P.G., Raring, N.W., 2016. Data report: 2015 Gulf of Alaska bottom trawl survey (NOAA 779 
Technical Memorandum No. NMFS-AFSC-325). US Department of Commerce, National Oceanic 780 
and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science 781 
Center, Seattle, WA. 782 

Wakabayashi, K., Bakkala, R.G., Alton, M.S., 1985. Methods of the U.S.-Japan demersal trawl surveys, in: 783 
Bakkala, R.G., Wakabayashi, K. (Eds.), Results of Cooperative US-Japan Groundfish Investigations 784 
in the Bering Sea during May-August 1979. 785 

Watanabe, S., 2013. A widely applicable Bayesian information criterion. J. Mach. Learn. Res. 14, 867–786 
897. 787 

Wiens, B.L., 1999. When Log-Normal and Gamma Models Give Different Results: A Case Study. Am. Stat. 788 
53, 89–93. https://doi.org/10.1080/00031305.1999.10474437 789 

Wikle, C.K., Zammit-Mangion, A., Cressie, N., 2019. Spatio-Temporal Statistics with R, 1 edition. ed. 790 
Chapman and Hall/CRC, Boca Raton. 791 

Wilberg, M.J., Thorson, J.T., Linton, B.C., Berkson, J., 2010. Incorporating time-varying catchability into 792 
population dynamic stock assessment models. Rev. Fish. Sci. 18, 7–24. 793 

Ye, Y., Dennis, D., 2009. How reliable are the abundance indices derived from commercial catch-effort 794 
standardization? Can. J. Fish. Aquat. Sci. 66, 1169–1178. 795 

796 



33 
 

Figures and Tables 797 

 798 

Table 1:  All stocks included in analysis, including the scientific and common name of the assessed species, the region for each stock 799 

(GOA=Gulf of Alaska, EBS=Eastern Bering Sea), and a reference for the stock assessment.  We also list how the catchability 800 

coefficient for the bottom trawl survey is treated (either fixed at a value a priori, estimated with a prior distribution, or estimated 801 

freely without a prior distribution), the coefficient of variation for the associated prior when estimated using one, and whether 802 

catchability is varying over time either through a time-dependent parameterization or implicit variation due to estimated time-varying 803 

selectivity.  804 

 Scientific name Common 
name 

Region Assessment 
reference 

Treatment of 
catchability 
coefficient 

CV of prior on  
catchability 
coefficient 

Time-varying 
catchability 

Atheresthes stomias Arrowtooth 
Flounder 

GOA Spies et al., 
2019a 

Fixed 
-- 

Not time-dependent 

Microstomus pacificus Dover Sole GOA McGilliard et 
al., 2019 

Fixed and 
estimated with 
prior 85% 

Time-blocks (fixed one 
block, estimated one 
block) 

Hippoglossoides 
elassodon 

Flathead Sole GOA Turnock et al., 
2017 

Fixed 
-- 

Not time-dependent 

Sebastes polyspinis Northern 
Rockfish 

GOA Cunningham et 
al., 2018 

Estimated with 
prior 45% 

Not time-dependent 

Gadus macrocephalus Pacific Cod GOA Barbeaux et al., 
2019 

Estimated freely 
-- 

Time-dependent through 
selectivity 

Sebastes alutus Pacific Ocean 
Perch 

GOA Hulson et al., 
2019 

Estimated with 
prior 45% 

Not time-dependent 
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Lepidopsetta 
polyxystra and L. 
bilineata 

Northern and 
Southern Rock 
Sole 

GOA Bryan, 2017 Fixed 

-- 

Not time-dependent 

Gadus chalcogrammus Walleye 
Pollock 

GOA Dorn et al., 
2019 

Estimated with 
prior 10% 

Not time-dependent 

Pleuronectes 
quadrituberculatus 

Alaska Plaice EBS Wilderbuer and 
Nichol, 2019 

Fixed 
-- 

Not time-dependent 

Beringraja binoculata Alaska Skate EBS Ormseth, 2018 Fixed -- Not time-dependent 
Atheresthes stomias Arrowtooth 

Flounder 
EBS Spies et al., 

2019a 
Estimated freely 

-- 

Time-dependent through 
annual deviations related 
to bottom water 
temperature 

Reinhardtius 
hippoglossoides 

Greenland 
Turbot 

EBS Bryan et al., 
2018a 

Fixed 
-- 

Not time-dependent 

Atheresthes evermanni Kamchatka 
Flounder 

EBS Bryan et al., 
2018b 

Estimated freely 

-- 

Time-dependent through 
annual deviations related 
to bottom water 
temperature 

Lepidopsetta 
polyxystra 

Northern Rock 
Sole 

EBS Wilderbuer et 
al., 2018 

Fixed 
-- 

Not time-dependent 

Gadus macrocephalus Pacific Cod EBS Thompson and 
Thorson, 2019 

Estimated freely 
-- 

Time-dependent through 
selectivity 

Hippoglossus 
stenolepis 

Pacific Halibut EBS 

-- 

Estimated freely 
in areas-as-fleets 
model -- Not time-dependent 

Gadus chalcogrammus Walleye 
Pollock 

EBS Ianelli et al., 
2019 

Estimated freely 
-- 

Time-dependent through 
selectivity 

Limanda aspera Yellowfin Sole EBS Spies et al., 
2019b 

Estimated with 
prior 

90% 

Time-dependent through 
annual deviations related 
to bottom water 
temperature 
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Anoplopoma fimbria Sablefish GOA 
and EBS 

Hanselman et 
al., 2019 

Estimated with 
prior 30% 

Not time-dependent 

 805 

 806 
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Figure captions 807 

 808 

Figure 1:  Model-based abundance indices (y-axis) in each year (x-axis) for each of twenty 809 

species (panels), showing estimates from four nonspatial models: three Poisson-link delta-810 

models using lognormal (red), gamma (green), and inverse-Gaussian (blue) distributions for 811 

positive catches, and a Tweedie distribution for modeling both encounter rate and positive catch 812 

rate (grey). 813 

 814 

Figure 2:  Visualizing model-based abundance indices (y-axis, shown on log-scale) in each year 815 

(x-axis) for each of three species (columns) using four alternative distributions (rows), where 816 

each panel shows the abundance index (line) and 95% confidence interval (shaded area) for three 817 

different spatial resolutions (see color legend in bottom-right panel indicating the number of 818 

knots) as well as the design-based estimators (black dots), and each panel also includes the 819 

percent AIC weight for each distribution and resolution across models (e.g., where percentages 820 

for a given color sum to 100% for each column) 821 

 822 

Figure 3:  Marginal AIC weights (y-axis) for each distribution (x-axis) using a given model 823 

resolution (rows).  Each bar includes multiple colored segments, showing the AIC weight for 824 

each individual stock. 825 

 826 

Figure 4:  Histogram showing number of species (y-axis) with a given ratio between model- and 827 

design-based indices when each is averaged across years (x-axis, shown on log-scale) for three 828 

model resolutions (columns) and distributions (rows).  A well-performing model will have an 829 



37 
 

average ratio near 0 on the log scale or 1.0 on the linear scale. Each panel also has a set of 830 

numbers showing the average ratio (top-left, where 1.0 corresponds to a similar scale) and the 831 

root-mean-squared error (top-right, where 0.0 corresponds to a scale that is identical between 832 

model- and design-based approaches) when using epsilon bias-correction (black) or not using 833 

bias-correction (red).   834 

 835 

Figure 5:  Distributions of relative errors when comparing estimated and true abundance indices 836 

(x-axis) within a factorial simulation experiment conditioned on survey data for Pacific cod in 837 

the Gulf of Alaska, where the four distributions are used as operating models (rows, such that 838 

they are fitted to available data where fixed and random effects are then held constant when 839 

simulating new sampling data following the same sampling design), as well as estimation models 840 

(columns, i.e., fitted to simulated data from a given operating model).  Panels on the diagonal 841 

involve the same estimation and operating model and are expected to have low error, while each 842 

column shows the performance of a given estimation model across different forms of model mis-843 

specification.  A generally well-performing estimation model will have a relative error near 0 844 

(dashed vertical line) for all panels in a given column; each panel also lists the bias and root-845 

mean-square-error (in parentheses) calculated for all replicates for a given operating and 846 

estimation model.   847 

 848 

Figure 6:  Distribution of Pearson correlation coefficients between estimated and true density, 849 

calculated for each year individually and then averaged across years for a given simulation 850 

replicate (x-axis), where the four distributions are used as operating models (rows) as well as 851 

estimation models (columns).  See Fig. 5 caption for more details.  A well-performing estimation 852 
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model will have a correlation near 1.0 for each panels in a given column; each panel also lists the 853 

average correlation calculated for all replicates for a given operating and estimation model.   854 

  855 
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Fig. 1 856 
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Fig. 2 859 
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Fig. 3 862 
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Fig. 4 865 
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Fig. 5 868 
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Fig. 6 871 
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